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Abstract

We consider the use of spatio-temporal adaptive array processing in over-the-horizon radar applications
in order to remove nonstationary multipath interference, known as "hot clutter". Since the spatio-temporal
properties of hot clutter cannot be assumed constant over the coherent processing interval, conventional
adaptive techniques fail to provide effective hot-clutter mitigation without simultaneously degrading the
properties of the backscattered radar signals, known as "cold clutter". The approach presented incorpo-
rates multiple "stochastic" (data-dependent) constraints to achieve effective hot-clutter suppression, whilst
maintaining distortionless output cold-clutter post-processing stationarity.

1. Introduction

This lecture is concerned with adaptive processing of data from high frequency (HF) over-the-horizon radar
(OTHR). In general, such radar systems operate by collecting data over a coherent processing interval of time
(CPI) which consists of N transmitted pulses or sweeps (in the case of continuous wave (CW) radars), emitted
at a pulse repetition frequency of f, pulses per second. The receiving system consists of M elements, sub-

- arrays for example, with each element linked to an individual digital receiver. Receiver outputs are sampled at
the Nyquist rate of ft samples per second, resulting in T samples per pulse repetition interval (PR1). The total
set of data collected in this manner during a single CPI therefore consists of M x N x T samples. Increments
in the Nyquist rate (range bins) within a particular PRI are called fast-time samples, while those across PRIs
are termed slow-time samples.

For typical sky-wave OTHR, we have M = 16 to 32, N = 128.to 256 and T = 50 to 60 [1]; while for
surface-wave radars, the CPI may approach 60 or 120 sec [2], so that even with ft = 10 Hz, we have N = 1000.

For HF OTfIR, an interference signal produced by a single source is typically seen as a multiplicity of
interference signals at the receiving antenia array, each mode propagafing -from source to receiver along a
different path.

Various ionospheric layers and inhomogeneities involved in the reflection of interference signals are re-
sponsible for the so-called hot-clutter phenomenon. If the propagation paths involve reflections from highly
perturbed and nonstationary ionospheric regions (such as the equatorial "hot plasma" area or the polar regions),
then for hot clutter, nonstationarity of the spatio-temporal covariance matrix over a typical CPI is inevitable. In-
deed, spatial nonstationarity of ionospherically propagated interference signals has been observed in HF OTHR,
even over the relatively short CPIs typical for aircraft detection [3]. Consideration of this phenomenon is found
to be essential for ship detection via skywave propagation, and even more so for HF surface-wave radars where
nonstationarity over much longer CPIs leads to a dramatic degradation in the performance of most existing
adaptive interference cancellation techniques [3].

It is important to note the critical distinction between hot clutter and ordinary cold clutter: the latter is
a reflection of the radiated radar signal, while the former refers to the (diffuse) multipath scattered jammer
signals.
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Of course, the so-called "general fully adaptive" spatio-temporal processing (STAP) described in [4] for
example, can theoretically solve the problem ofjoint hot and cold-clutter suppression [5]. However, in practice
this is rarely possible because the dimension of such a fully adaptive system would be MNQ, where Q is the
number of fast-time samples involved (number of taps). Indeed, for any HF application with N > 128, a fully
adaptive scheme is totally impractical simply due to the lack of, say, 2MNQ training samples,

Thus from a practical viewpoint, we should consider a scheme whereby each "finger beam" is associated
with an MQ-variate fast-time STAP to reject the (diffuse) jammer multipath (hot clutter). For HF OTHR
applications, the output signals of each beam should be processed by the standard slow-time inter-PRI coherent
processing (Doppler spectrum analysis), provided that the cold-clutter slow-time properties at the scalar finger-
beam output are not perturbed by the previous fast-time STAP.

Obviously for sufficiently high nonstationarity of the hot-clutter signal, this is a problem since the uncon-
trolled pattern fluctuations over the CPI introduced by conventional fast-time STAP modulate and consequently
decorrelate the cold-clutter signal. For purely spatial adaptive processing, this latter phenomenon has been
established both theoretically and experimentally in HF OTHR [6, 3, 7, 8].

Note that if the cold-clutter signal was created by a limited number of point scatterers, it would be possible
to "freeze" the receiving antenna pattern in the direction of each point scatterer using standard linear determin-
istic constraints [9], which are normally used in order to "protect" the antenna pattern in the expected signal
direction. Clearly the spatial distribution of cold clutter is generally quite broad, so that it is collected by most
of the antenna beam-pattern rather than in just a few directions. Therefore the above method is inappropriate,
since we are not able to "freeze" the entire pattern or even a significant part of it without a dramatic degradation
in hot clutter rejectability.

Another quite straight-forward approach in avoiding antenna fluctuations is to return to the time-invariant
(over CPI) fast-time STAP. The technique of averaging the nonstationary covariance matrix over the CPI has
been introduced and tested for HF OTHR applications [6, 3], where it was demonstrated that this approach is
appropriate only for extremely short CPIs. The paper [3] defines the typical "stationarity interval" for iono-
spherically propagated jammers within the dynamic range of contemporary digital receivers to be 100 to 150
psec, which includes only a few PRIs. Jammer averaging over this interval usually leads to the acceptable
degradation of I to 3 dB in jamming rejectability compared with "quasi-instantaneous" covariance matrix es-
timation which uses fast-time training samples in the immediate neighborhood of the analyzed samples within
the same PRI, where the delay between the training samples and the operational ranges can be ignored.

Therefore for HF OTHR (N = 128), this approach is also completely inappropriate, though the property
of "local stationarity" over the short interval of a few consecutive repetition periods will be heavily exploited
in what follows.

To summarize, no existing technique is able to provide over sufficiently long CPIs a highly effective hot-
clutter-only mitigation without compromising the cold-clutter processing. The main objective of this lecture
is to introduce an approach whereby the nonstationary hot-clutter rejection is performed by fast-time STAP
updated from PRI to PRI, while the slow-time correlation properties of the cold-clutter scalar output are not
affected by the STAP temporal fluctuations.

A spatial-only adaptive processing (SAP) technique involving stochastic constraints was recently intro-
duced to solve this problem [6, 3, 7, 8]. This technique was experimentally verified for HF OTHR, with results
reported in [3, 8]. Here we refer to the generalization of this the stochastic-constraints approach to spatio-
temporal adaptive rejection of hot clutter which is essentially nonstationary over the CPI [151.

2. SC STAP Algorithm: Model Description

Let the M-variate complex column vector zkt be the antenna array snapshot corresponding to the kth repetition
period and the tth range bin, ie. Zkt E CMX1 where k represents "slow time" while t represents "fast time". In
general, we may define the snapshot zkt to be the mixture

Zkt -Skt-+'Ykt+ -Xkt +-l kt for k=,l 2,...,N; t=,l 2,...,T (1)
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where skt is the desired signal backscattered by a point target; Yk.t is the radar signal backscattered by terrain
or the sea surface ("cold clutter"); kt. is the total jamming signal, comprising direct path, specular and diffuse
multipath scattering ("hot clutter"); and ri'k is additive white noise of power or, with the correlation property

{7i k ,,} = 0,2 6(k-k') 6(t-t') IM. (2)

Typically, the target signal skt originating from some direction 0o takes the form

skt =a Vyit exp (i[wI k/fr+ Ot]s(Oo) (3)

where a is a complex Gaussian-distributed (scalar) amplitude; /.t is the signal waveform; Wd is the target-signal
Doppler frequency (in radians); Ot is a range-dependent phase, and s(Go) is the array manifold ("steering")
vector.

The cold-clutter snapshot ykt is simulated here as a stationary random M-variate Gaussian process with
the correlation property

C. {~jyk't'} = 6(t-t') RY (4)Y kct H k-k' 4

(ie. the range sidelobes are ignored) where RY is the cold-clutter spatial covariance matrix at the slow-time
. . k--k

lag (k - k'), and Roy is the standard M-variate Hermitian cold-clutter spatial covariance matrix.

The hot-clutter signal Wkt is assumed to be a convolutive mixture of P external interference signals gkt,

p = 1,.., P, where each g(p) is a complex waveform radiated by the pth jammer at time (k/fr + t):Ykt

L

Xkt = Hk egk,t-e+l (5)

where L is the assumed maximum number of propagating paths for any of the P interfering sources, and Hkt
i (1) (P)] T

is defined below. The P-variate vector = t kt , • t J consists of complex waveforms radiated by

all P sources at time (k/fr + t).
As usual, we assume that

Jq (P) (p') - ~ ~ )USf() '*tt )k't, 3 - &(p-p') (k-k') 5(t-t') Or% (6)

where or, is the pth jamming signal power, ie. the jammers are assumed to be mutually independent and
temporally white (broadband).

For diffuse multipath, L is usually defined as the number of range bins covering some range interval AR
involved in the scattering [9, 4]-

BAR
L- =ftAR (7)

C

where B is the signal bandwidth, and c is the speed of light. For continuously distributed scatterers, it is
more accurate to determine the interval between lines of constant path delay by the range grid, defined by the
maximum hot-clutter suppression for continuously distributed clutter. The latter itself is usually defined by the
input hot-clutter-to-noise ratio. The larger this ratio, is, the smaller the separation should be. This phenomenon
has been known for many years [10, 11]; an example of the accurate evaluation of the number L is given in [4]
for one particular hot-clutter-to-noise ratio.

The MP-variate matrix HWe introduced above in (5) represents the instantaneous total impulse response,
relating the radiated jammer signals g,) to the received hot-clutter snapshots Xkt. Naturally Hkt incorporates
the time-varying channel characteristics experienced by each propagation path. For diffuse multipath, the time
variation of the synthetic wavefront from the scatterers along each line of constant path delay is defined by a
differential Doppler shift along that line. More precisely, the (i, j) t element of the matrix Hke is a complex
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coefficient which is practically constant over the kth PRI, and is a measure of the contribution of the jth

interference source with relative delay f to the final hot-clutter output at the ith receiver during the kth PRI
Although the number of interfering sources P is assumed to be strictly less than the number of antenna

elements M, the total number of independent sources seen by the antenna array may approach PL. Thus, even
for modest P and L, their product may exceed the number of antenna elements M. If

PL > M (8)

then a purely spatial approach will be generally ineffective. On the other hand, it is necessary to emphasize that
the product PL itself does not entirely define the best performance of the adaptive technique. For example,
if all scatterers are situated in an extremely thin layer (of the ionosphere) with constant path delay ("auroral"
scattering), then the rank of the covariance matrix would always be unity for a single jamming source. Therefore
in this case, pure SAP would give us the maximum efficiency for distributed scattering cancellation, regardless
of the number of such point scatterers. This phenomenon was described in [11].

Equally, pure SAP should deliver effective hot-clutter cancellation for a single jammer if

L < M. (9)

The existence of numerous point scatterers along the path of equal delay over a wide angle means that the main
beam direction will be unaffected by SAP, even if this main beam intersects this path [11, 4]. On the other
hand, if there is a single scatterer along the path of equal delay which intersects the main beam, then pure SAP
would not deliver effective suppression of hot clutter collected by the main beam. To be more accurate, under
the condition L < M, such hot clutter could be rejected, but the main beam would also be affected.

These quite simple considerations are necessary for a clear understanding of the correspondence between
SAP and STAP in the hot-clutter mitigation problem.

Hereafter we will be dealing with the general case PL > M.
If the model of (5) is adopted for some fixed L, then we note that the number of taps Q that are necessary

for hot-clutter suppression is defined directly by the model. Let us introduce the MQ-variate "stacked" vector
2ikt, consisting of Q successive fast-time samples Xkt stacked on top of each other. According to (5), we may
write Eri7ez] t Hko ... Hk,L.,- 0 ... 0 K kt

aXk, t-1 0 H ko ... H k,L--1 "'. : g ,1-)

Xk.f-Q+l 0 ... 0 Hko ... Hk-,L-1 gk,t-L+l-Q+l

or more compactly

- " - 5ikt = Hkte 9kt. (11)

The number of rows in the stacked block matrix Hle is equal to MQ, while the number of columns is P(L +
Q - 1). Thus the stacked noise-free hot-clutter spatio-temporal covariance matrix

J e {xikt i4 {} (12)

is always rank-deficient if
MQ > P(L+Q-1) (13)

ie.

P(L- 1) (14)

M-P
This condition and the basic presentation of (10) are well known in the field of multiple-input-multiple-output
(MIMO) systems [12].

For L = 1, STAP cannot outperform SAP, as expected. While for Q = 1, we find that the covariance matrix
is rank-deficient if M > PL, ie. SAP alone can effectively suppress hot clutter.
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It is interesting to note that the number of taps Q = L usually recommended [9, 4] is justified only for
P = M/2. The number of taps necessary to cope with the maximum number of independent jammers Pmax =
M-1 is

Q,,a- _ Pmax (L- 1) (15)

which again agrees with the results of MIMO studies [12].
Note that when the condition of (13) is satisfied, the rank of the covariance matrix fi' is

rank[R/'] < P(L+Q-1). (16)

Thus the condition (13) actually generalizes the well-known condition for spatial suppression of P independent
jammers

M> P (17)

which obviously follows from (13) when Q = L = 1.
It is necessary to emphasize that the condition of (13) or (17) guarantees hot-clutter rejectability irrespective

of the signal-to-noise ratio (SNR) obtained as a result of such rejection. For independent jammers and pure
SAP, the main beam would be affected when the direction of arrival of one of the jammers is close to the target
signal direction. For STAP a similar unfortunate scenario may occur, when the target-signal stacked vector 7ikt
(defined similarly to .ik and g4t) can be fairly accurately presented as a linear combination of the columns of
•k~e-

Obviously, in practical applications, Q should exceed Qnm , as defined by (14) because of the additional
constraints that are usually imposed.

Suppose now that the number of taps Q is properly chosen, and so our problem is to find an MQ-variate
STAP filter ii't with which to process the MQ-variate stacked vector ikt:

Zkt : (18)LZk,t-Q+l

to form the scalar output zkt = AH 4t. We may similarly compute the scalar output sequences which corre-
spond to the target signal skt, the backscattered cold clutter ykt, and the hot clutter Xkt:

S,= iH --
8

kt Wkt Skt

Ykt = Wktkt (19)
Xkt = -VH-iAWkt = o fkt.

The first set of constraints for the STAP vector ikt is designed to ensure the undistorted reception of the
target signal. There are several approaches using deterministic linear constraints-which can protect the desired
signal against distortions caused by temporal adaptivity [9]. For example, we may introduce the set of Q linear
constraints such that

kt AQ(Oo) = eQ (20)

where the MQ x Q matrix AQ (0o) = s(Oo) D IQ (0 represents the Kronecker product) and the Q-variate
column vector eQ = [1, 0,..., O]T.

Such constraints ensure the distortionless reception of the target signal from the expected DOA 0o. If one
requires the output signal skt to be more robust in the presence of pointing errors, constraints on the steering
vector derivatives might also be imposed, eg.

(Oo[ ) S'(0O) 0 o ... o ]
A 2Q (0 0) 0 : 8"'. S'0 )00 (21)

0 0 ... 0 0 5(0o) S'( )
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where

s'(0o) = Os(O) (22)0 - 1 0=0o 22

and
ki A2Q (0o) = eTQ. (23)

In general, we may define an MQ x q matrix Aq together with the q-variate vector e. to implement q linear
constraints:

f,' Aq(Go) = eT. (24)

The cold clutter is assumed to be a stationary process (in a broad sense), and thus it may be approximated
by the multivariate auto-regressive (AR) model of order n:

Ykt + Z Bj Yk-j,t = tkt (25)
j=l

In the above equation, Bj are the M-variate matrices which are the solutions of the multivariate Yule-
Walker equations [13]:

[J?- 1 <1yelE
B 0 (26)R ... oYB,

where

{ 4, = Rf for j=0 (27)
+ 0 for j#0.

Note that the scalar moving average (MA) model is usually considered an alternative to the AR model, however
it is now known that even the multivariate MA model can be presented as a multivariate AR model of finite
order under surprisingly mild conditions [ 14] (in the scalar case this order is infinite).

In [151, we derived for this general model the exact analytic solution for a time-varying fast-time STAP
filter that maintains the stationarity of the cold-clutter scalar output signal, regardless of the filter's temporal

fluctuations. Yet, practically feasible solutions, demonstrated below, may be derived for the simpler scalar
multivariate model:

vk, + 1_ bi ?k-j,t = tkt (28)
j=1

where B, = b, Im.

3. SC STAP Algorithm: Practical Routine for Pulse-Waveform (PW) -F OTHR

An operational (practical) approach for purely spatial adaptive processing was introduced in [6, 3, 7, 8]; we
shall now generalize this to the STAP case.

In most PW HF OTHR systems, scattering from the Earth's surface (cold clutter) and from targets occu-
pies only a limited range within each repetition period. For sky-wave radar, the finite duration of the oblique
backscattered signal (OBS) is dictated by the radar-ionosphere-target geometry. For surface-wave radar, nat-
ural attenuation leads to suppression of the backscattered signal far from the end of the repetition period.
Naturally these scattered (cold-clutter) signals are submerged in the hot clutter and are not directly available for
treatment by stochastic constraints.

Meanwhile, the hot-clutter signal usually occupies the entire repetition period (the entire CPI, actually) and
in most cases some region within the PRI can be easily identified as containing hot clutter only. Hence this
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operational routine relies on a priori information on the distribution of the cold-clutter-free ranges within the
PRI.

We have already discussed the "local stationarity" property of the hot clutter over the limited number of
consecutive PRIs. Assume for example, the second-order (no = 2) cold-clutter AR model of the simple scalar
multivariate model (28). We form the fast-time STAP filters iv' in the order k = 1, .. , N - tn; the first of
which (k = 1) is stochastically unconstrained, and thereafter are stochastically constrained. We construct this
initial STAP filter tiv using the hot-clutter-only training samples from some common range region within the
first three consecutive PRIs:

+r,: kr)' ,(Oo) [ý(0o)0 •(0o)]-_
it 1  q [ Aq ]eq (29)

where A7 (0o) and e. are the deterministic constraints from (24) andR-= (On + h= + MM) (30)

Due to the "local stationarity" of the hot clutter, we believe that the hot-clutter samples are properly rejected by
the STAP filter fv' over all ranges of these three initial PRIs, so that the scalar output for operational ranges
consists mainly of cold clutter, noise and possible targets, ie.

- -.avH -V ýý + &avH - a,,H
itV ktZt Wit it-tot kt +W'it ýlkt for k 1,2,3. (31)

Note that ilý' is a function only of k, not of fast time t. For the next adaptive filter fv' (now range-dependent
and stochastically constrained), we apply the "sliding-window" average to the next three repetition periods:Ra f ( q + fim + f• ) (3)

2 3 2. 3

to again ensure a proper hot-clutter suppression over these three PRIs. Clearly the moving-average across (n+1)
adjacent repetition periods also ensures that tz covariances R.i are common to each successive average RI".
The system ofn, stochastic constraints corresponding to (31) and (32) may then be written as:

- avH - - vH for k = 2, 3.
~2t Zkt = Wit -i ork=,3t (33)

The right-hand sides of these constraints consist of the cold-clutter samples mainly due to (31); whereas (32)
ensures that the filter iai, properly processes the cold-clutter samples only, since the hot-clutter component is
to be rejected.

For an arbitrary slow time k, the operational solution

=( Ak t [1Ht (kv eq+,. for k--2,...,N-2 (34)

is defined by the "sliding-window" covariance matrix

ktv~k? +flk+1 +fk 2 ) (35)

and the system of stochastic constraints

kt [= I( -H i (00) Zkt (36)
k-i,t o/

where Zkt = [kt Ii+lt]. The latter simply means that

- aVH - = avH
Wkt Zkt Wk._1,t Zk(

= VH aVH - (37)
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The generalization of these three equations for arbitrary r. is obvious.
Note that the hot-clutter "quasi-stationarity" over the (n+ 1) consecutive repetition periods simply means

that the signal eigen-subspace dimension of the resulting averaged covariance matrix should still be less than
the total number of degrecs of freedom in the STAP filter (MQ). Even when the nonstationarity is significant,
proper hot-clutter rejection can be achieved with this averaging provided

(n+ 1) [P (L+Q- 1)] < MQ. (38)

Recall from (13) that P(L+Q-1) is the rank (signal eigen-subspace dimension) of the "intra-sweep" spatio-
temporal hot-clutter-only covariance matrix. Obviously the number of taps Q which guarantees this condition
is

(r+1) P(L- 1)
Q> M (+) P(39)

with the additional necessary condition
M > (+ 1)P. (40)

To summarize, using the stated hot- and cold-clutter models and operational routines, the above conditions
specify the proper choice of purely spatial (M) and total (MQ) degrees of freedom which guarantee high
hot-clutter rejectability under almost arbitrary nonstationarity of the hot clutter.

Naturally, the above approach may also be applied to CW OTHR provided there is access to some hot-
clutter-only range cells within each PRI.

4. Operational Approach: Finite Sample Size Considerations

The final step towards a truly operational routine is the replacement of the true hot-clutter covariance matrix

017' by its sample estimate R-. We do this by averaging over all range cells that are free of cold-clutter

contamination, for each PRI. For HF OTHR, the size of the hot-clutter training sample used to form Rk is
a serious issue. This motivates our investigation into means of reducing the length of the training sequence
necessary for hot-clutter cancellation.

One significant contribution has already been made by (14), where the minimum number of taps Qi, is
given in terms of M, L and P.

According to the famous result of Mallet, Reed and Brennan [16], in order to obtain an average 3 dB
loss in SNR compared with the optimum, the number of independent samples To used for estimation of some
MQ-variate covariance matrix is

To > 2MQ. (41)

Apart from being too large a number in most cases, this estimate does not leave room for the trade-off between
the number of spatial and temporal degrees of freedom.

Less well-known are the results of [17, 18, 19], recently duplicated in [20], which show that by proper
diagonal loading:

Rk = I3IMQ + L (;ikt + ýkt) (5ikt + ,he)H for f> (42)
t=1

the number of snapshots To sufficient for 3 dB losses may be reduced to

To > 2 rank fix . (43)

Recall that the rank of h' is equal to the signal eigen-subspace dimension of 07). Where 071r is not averaged
over adjacent PRIs, this dimension is defined by (13) and (16), ie.

rank Rix9 < P(L + Q- 1). (44)
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This firstly means that the "blind zone" can be dramatically reduced (compared with using To > 2MQ).
Secondly, this is analytical evidence for the conclusion made in [21]. Indeed, according to (43) and (44), in
order to decrease the 'blind zone', the number of spatial degrees of freedom M should be maximized, followed
by the corresponding reduction in temporal degrees of freedom Q.

According to (35) and (42), the operational estimate

av 1 M t, x?7 -izxfl
Rk 3 R + Rk+l + Rk+2 (45)

involves 3To training samples in total. Thus averaging over the (slightly) nonstationary hot-clutter training sam-
ples belonging to three consecutive PRIs reduces the random errors for this estimate. Of course, the maximum
reduction is obtained when the actual nonstationarity could be ignored:

jýx'7 R~x?7 x
kc - k+1 k+2- (46)

Under such extreme circumstances, the total number of necessary training samples (To = 36) could even be
distributed over these three PRIs.

When there is significant nonstationarity, however, there will be some optimal trade-off in the number of
PRIs involved, given that the sample volume To is fixed for each PRI. Indeed by increasing the number of PRIs
involved in averaging (K) we increase the signal subspace dimension of the true covariance matrix

1vK
k= E 1 /kX+r/ (47)

j=O

On the other hand, we somewhat decrease the random error by use of the estimate

1av K nw X"
R - K+1 l Rk+j (48)

j=1

Clearly the optimum number K is not identical to the minimum number.
Therefore with simulations that involve the true covariance matrices, we expect covariance matrix averaging

to introduce some extra losses in hot-clutter rejectability compared with the ideal case of using 077. On the
other hand, the fully operational routine using a finite training sample volume per PRI gains in the reduction of
stochastic errors due to the averaging process.

The curves labeled qosa and ivosi in Figs. 1, 2 and 3 demonstrate the efficiency of the fully operational
routine, involving a loaded sample covariance matrix, (42) and (45) and simulated data [15]. Comparing
the output Doppler spectra obtained for range cells with and without targets, we see that the operational SC
STAP-routine achieves both highly efficient target detection and subclutter visibility protection. The curve in
Fig. 1 indicates the signal-to-hot-clutter ratio for the operational filter across all 256 PRIs. While the 36 training
samples are not strictly independent (due to multimode propagation), additional stochastic losses are negligible.

These results show that the operational SC STAP approach can deliver remarkably good performance.
Since each range bin is processed by an individual fast-time STAP filter, the cost of such performance is a
higher computational load. However for. HF OTHR applications at least, where the number of range cells is not
large and the Nyquist rate ft is measured in dozens of kHz, this load is reasonable.

5. SC STAP Algorithm: Efficiency Analysis by Real-Data Processing

The most important remaining question to consider is the adequacy of the scalar low-order AR model which
is applied to real cold clutter. This question has been partly discussed in [3]. Here we refer to some new real
HF OTHR clutter data to illustrate the ability of the proposed SC STAP algorithm to retain the initial subclutter
visibility.
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The first set of experimental data was collected by the Jindalee facility, located in Alice Springs, Australia
[22]. Typical sky-wave sea-scattered signals have been collected by the 32-channel receiver in its ship-detection
mode, without noticeable jamming. The interference signals were recorded separately, when the system oper-
ated in receive-only mode. This experimental setup allowed us to compare in [15] the initial and "stabilized"
cold-clutter spectra with one, two and four constraints.

While a single stochastic constraint is inadequate, with subclutter visibility degrading up to about 15 dB,
two and four constraints gave output spectra that are practically identical to the CBF spectra. This provides a
justification of our use of the simple AR cold-clutter model for sky-wave OTHR applications.

For surface-wave radars, the sea-clutter is even closer to its theoretical model, introduced in [23]. We
present one example from the data set collected by the 12-channel pulse-waveform SW OTHR facility, operat-
ing with a PRF of 10 Hz and CPI of 100 seconds. Figs. 4 and 5 together illustrate (a) the standard CBF spectrum
corresponding to the filter fiCBF, and the output spectra obtained for (b) globally averaged STAP (constant for
all PRIs) ivT--, (c) SC STAP with two constraints fox, and (d) unconstrained STAP ai•vAp. The first three
spectra are indistinguishable, whereas the unconstrained STAP filter fluctuations degrade subclutter visibility
significantly. Note that the CBF subclutter visibility (rather poor in this case) is retained without any noticeable
broadening of the narrow-band Doppler components (Bragg lines).

These results demonstrate that, despite the complexity of global models that properly describe real HF
sea-clutter, we may apply simplistic models locally without major degradation.

6. Summary and Conclusions

We have identified the similarity between HF OTH radars, with respect to the problem of multimode-interference
(hot-clutter) rejection utilizing STAP. The problem of nonstationary hot-clutter cancellation via fast-time STAP
has been formulated, mainly relying upon recently investigated properties of HF signals propagating through
perturbed ionospheric regions.

It has been demonstrated that the standard fast-time STAP algorithms are inappropriate for the removal
of nonstationary hot clutter when the backscattered signal (cold clutter) properties must be preserved in some
way. Fast-time (intra-PRI) STAP filters that vary from PRI to PRI in an unconstrained fashion cause a severe
degradation in the cold-clutter Doppler spectral properties (namely, subclutter visibility). On the other hand, the
application of time-independent STAP algorithms, for which the hot-clutter spatio-temporal covariance matrix
is averaged over a relatively long CPI, severely degrades the hot-clutter rejectability.

The only previously known approach that can theoretically perform simultaneous hot- and cold-clutter
rejection is the "uniform STAP". This has a problem size defined by MNQ, where M is the number of antenna
receivers, N is the number of PRIs within each CPI, and Q is the number of fast-time taps. For all HF OTHR
applications, where typical values are M = 16 to 32 and N = 128 to 256, this approach is practically useless,
simply because of the lack of sufficient training samples needed to adapt the system.

With the goal of overcoming these limitations of the standard approach, this study has investigated the
theoretical existence of slow-time-varying fast-time spatio-temporal filters that can provide high hot-clutter
rejectability and stationarity of the hot-clutter scalar output signal. We have demonstrated that for a particular
multivariate scalar low-order AR model of the cold clutter, data-dependent ("stochastic") constraints can retain
the stationarity of the cold-clutter scalar output.

Operational routines that implement the main principles of the proposed theoretic SC STAP were then
introduced (in the context of HF OTHR applications). Here the a priori known distinctions between the hot-

Sand cold-clutter distributions in range are exploited. More specifically, the ranges that are always free of cold
clutter (in pulse-waveform radar systems) are utilized for accurate hot-clutter covariance matrix estimation. The
efficiency of the SC STAP approach has been demonstrated by simulations, conducted for typical HF OTHR
scenarios.

These simulations have demonstrated the high efficiency of the SC STAP algorithm, both in hot-clutter
rejection and in cold-clutter post-processing.
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Finally, real sky-wave and surface-wave OTHR sea-scattered data has been processed in order to show that
a simple AR model of the cold clutter can be used locally over a small number of adjacent PRIs in forming
stochastic constraints, despite the fact that real cold clutter is globally far from being properly described by this
model.

Thus, for typical HF OTHR applications the proposed SC STAP method is verified. The performance
achieved comes at a considerable computation cost: each range cell should be processed by an individual
STAP filter that should be updated each PRI, ideally. Obviously, each finger-beam requires an individual set of
SC STAP filters. Nevertheless, for HF OTHR with a modest number of range cells and a comparatively low
bandwidth, this computational load is reasonable.
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Mode 1 Mode 2 Mode 3 Mode 4

jammer direction-of-arrival (Olt) (degrees) 0.5 20.5 39.3 44.9

hot-clutter-to-noise ratio (HCNR) (dB) 30 25 20 35

temporal correlation coefficient (ple) 1.00 0.90 0.88 0.91

spatial correlation coefficient (C-e) 1.00 0.91 0.90 0.90

Table 1: Hot clutter simulation parameters.

10 -. I

9-

8- -J.5 . ...

7-

2

0~
0 50 100 150 -200 250

repetition period

Figure 1: Several stages in the SHRC analysis of the SC STAP operational routine.
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Figure 2: Severalstages in the analysis of the weighted FFT Doppler spectra for a range cell containing only
cold clutter.
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Figure 3: Identical simulation parameters as for Fig. 2, but with a target present.
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* Figure 4: Real SW Doppler spectra processed by two different filters.
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Figure 5: Identical real-data as in Fig. 4, processed by two further filters.
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LIST OF MAJOR NOTATION

In E RYI'• = identity matrix

S(m, n) = generalized Kronecker delta function

en E inI = [1, 0,..., 0r

N = number of transmitted pulses or sweeps = number of repetition periods

k = 1,..., N = slow-time index variable

fr pulse repetition frequency (pulses per second)

M = number of antenna array sensors

ft= Nyquist rate at which receiver outputs are sampled (samples per second)

T = samples per pulse repetition interval (PRI)

t =1,..., T fast-time index variable

Q number of fast-time taps

zkt E CMx1 = antenna array snapshot for the kth repetition period and the tth range bin

"Skt E CM×x1 =target signal

yki E CMx1 = cold clutter

Xk, E CMx' = hot clutter

1Ikt t_ q, 1 = additive white noise

2 E R = power of additive white noise

0 o = target-signal DOA (degrees)

s (0o) E CMx 1= antenna array manifold ("steering") vector for the look direction 0o
tY E "[MXM = cold-clutter spatial covariance matrix at the slow-time lag k

Ro E .MxM = standard cold-clutter spatial covariance matrix

P = number of extemal interference (jamming) signals (index variable p = 1,..., P)

9(P) E C = complex waveform representing the pth external interferer (fammer)

L = number of-propagating paths for the jammers (index variable f = 1,..., L)

Hkt E CMAP = instantaneous total impulse response

9kt E CPx' = complex waveform vector representing all jammer signals

X, E R7 = the pt jamming signal power

,kt E Cm' l = Q-stacked antenna array snapshot

4kt E CMQ x1 = Q-stacked target signal snapshot

kt E CMQ×" = Q-stacked cold clutter snapshot

ikt E CMQ x 1 = Q-stacked hot clutter snapshot

a kt E CMQ×1 = Q-stacked STAP filter

H"e E CMQ xP(L+Q-1) = Q-stacked instantaneous total impulse response matrix

gkt E CP(L+Q-1)xl = Q-stacked jammer waveform vector
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Rk E H[.MQ ×MQ _ Q-blocked noise-free hot-clutter spatio-temporal covariance matrix

zkt E C = output from the Q-stacked STAP filter applied to the Q-stacked array snapshot

skt E C = output from the Q-stacked STAP filter applied to the Q-stacked target signal

ykt E C = output from the Q-stacked STAP filter applied to the Q-stacked cold clutter

ekt E C = output from the Q-stacked STAP filter applied to the Q-stacked hot clutter

q = number of linear constraints imposed on the Q-stacked STAP filter

Aq E CMQ X q = Q-stacked general deterministic linear constraint matrix

S= order of the cold-clutter AR model

Bj E CMXM = cold-clutter AR model parameters = Yule-Walker solutions (j = 1,..., )

tt E CMx1 = innovative noise in AR model

Rf E 7_IMxM = innovative noise spatial covariance matrix

1Bj E CMQ xMQ = Q-blocked cold-clutter AR model parameters

4kt E CMQ X I = Q-stacked innovative noise in AR model

,ý E 7HMQ ×MQ = Q-blocked innovative noise spatial covariance matrix

ivo E CMQ x 1 = any given constant Q-stacked STAP filter

yit E C = cold-clutter scalar output for the above filter

077 E J_[MQ xMQ = Q-blocked hot-clutter-plus-noise covariance matrix

(0) Q = Q-stacked steering vector for the look direction 0 0

Ykt E CMQ X • =Q-stacked stochastic-constraints matrix

Akt E CMQ ×(>-Fq) = ideal augmented linear stochastic constraints matrix (cold clutter only)

bj E C - cold-clutter (simplified scalar) AR model'parameters

rj E C = correlation coefficients of the (simplified scalar) cold-clutter process

0-4 E R = power of the innovative noise in the (simplified scalar) AR model

ivk' E CMQ x = stochastically unconstrained STAP filter (hot-clutter-plus-noise only)

/a.z E CMQ xMQ = moving-window average of hot-clutter-plus-noise-only samples

Az E CMQ x (,+q) = operational augmented linear stochastic constraints matrix

J = order of the generalized Watterson model for ionospherically propagated-hot clutter

/P' = temporal correlation coefficient

= spatial correlation coefficient

K = number of PRIs involved in averaging


